- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Gong, Xiaoqian (4)
-
Piccoli, Benedetto (4)
-
Hayat, Amaury (3)
-
Arnold, Paige (2)
-
Bayen, Alexandre (2)
-
Kardous, Nicolas (2)
-
McQuade, Sean T. (2)
-
Truong, Sydney (2)
-
Albeaik, Saleh (1)
-
Almatrudi, Sulaiman (1)
-
Aquino, John (1)
-
Barbour, William (1)
-
Bayen, Alexandre M. (1)
-
Bhadani, Rahul (1)
-
Carpio, Joy (1)
-
Chiri, Maria Teresa (1)
-
Chou, Fang-Chieh (1)
-
Delorenzo, Ryan (1)
-
Gibson, Marsalis (1)
-
Gunter, George (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible \begin{document}$ S $$\end{document} and removed \begin{document}$$ R $$\end{document} populations by ODEs and the infected \begin{document}$$ I $$\end{document} population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for \begin{document}$$ S $$\end{document} and \begin{document}$$ R $$\end{document} contains terms that are related to the measure \begin{document}$$ I $$\end{document}$. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.more » « less
-
Albeaik, Saleh; Bayen, Alexandre; Chiri, Maria Teresa; Gong, Xiaoqian; Hayat, Amaury; Kardous, Nicolas; Keimer, Alexander; McQuade, Sean T.; Piccoli, Benedetto; You, Yiling (, SIAM Journal on Applied Dynamical Systems)
-
Kardous, Nicolas; Hayat, Amaury; McQuade, Sean T.; Gong, Xiaoqian; Truong, Sydney; Mezair, Tinhinane; Arnold, Paige; Delorenzo, Ryan; Bayen, Alexandre; Piccoli, Benedetto (, The European Physical Journal Special Topics)
-
Lee, Jonathan W.; Gunter, George; Ramadan, Rabie; Almatrudi, Sulaiman; Arnold, Paige; Aquino, John; Barbour, William; Bhadani, Rahul; Carpio, Joy; Chou, Fang-Chieh; et al (, The Workshop on Data-Driven and Intelligent Cyber-Physical Systems)
An official website of the United States government
